Efficient and Inexpensive Synthesis of A Functionalized Pyrimidine

Yu Lu Process R&D, WuXi STA

Retro-synthetic Analysis

Major issues:

- High cost of starting material 1
- Reaction profile of Step 4 was very messy (~30% IPC purity of 6) due to de-halogenation of two SMs and de-Boc of Cmpds. **5** & **6**; HTS failed to identify acceptable reaction conditions.
- Chromatographic column purifications were required for both steps 4 & 5 • Low isolated yield for steps 4 & 5

<u>Major issues:</u>

- High cost of starting material 1
- Step 3 reproducibility: highly rely on the quality of catalyst/ligand, mixing efficiency and inert condition. If conversion is low, all starting material Cmpd. 8 decomposes back to Cmpd. 2 • High cost for step 3 due to required high loading of Pd catalyst and ligand.

constructing amidine **10** while avoiding expensive & problematic Route 3: catalytic cyanation

ETP

- Feasibility of route was preliminarily demonstrated • Route from ester 13 to amide 15 was also explored. Ester-amide exchange performed well, and was selected for further development
- Route from ester 13 directly to amidine 10 will be tried in future

Aspects for Process Development

Step 5

cleaning cost, etc.

Zhang, Tony Y. Chemical Reviews, **2006**, 106(7), 2583–2595.

of step 5a while mitigating PG- deprotection.

Reagent	Sol.	T (°C)	T (h)	9 / Int / 10	Des-PG impurit
NaOMe: 1.25 eq	MeOH:	40-50	2	12.6 / 83.5 / 0	0%
+NH4CI:2.5 eq	10V	20-30	18	12.0 / 2.6 / 80.7	0.5%
+NaOMe: 2.0 eq	MeOH:	40-50	2	4.5 / 21.7 / 69.6	0.4%
+NH4CI:2.5 eq	10V	20-30	18	4.0 / 0.3 / 90.0	1.3%

• Conversion of step 5a is improved, and des-PG impurity is suppressed

Demo result: 100 g scale, 75.0% isolated yield, 99.9% purity, 98.2% assay

• Screen reagent (TFAA>TCCA) and temp. (no significant effect) • Reduce reagent equiv. and solvent vol.

Entry	Reagents	Solvent	Temp (°C)	Time (h)	IPC (HPLC area%) Cmpd. 15 / Cmpd. 9
1	DIPEA: 3.0eq TCCA: 1.2eq	DCM (10 V)	0-10	20	34.3 / 9.8
2	DIPEA:4.5eq TFAA: 2.0eq	DCM (10 V)	20-30	18	3.9 / 75.1
3	Et₃N:4.5eq TFAA:2.0eq	DCM (10 V)	20-30	2	0/90.3
				+18	0/87.4
4	Et₃N:4.5eq TFAA:2.0eq	DCM (10 V)	0-10	2	2.8/89.6
				+18	0/89.6
	TFA:3 5eg			_	1

• Et₃N works best among screened organic bases

base effect on reaction conversion

Cmpd. 9

Step 5a t (b)

20

2

40-50

40-50

40-50

impurity growth in Step 5b.

Step 5a IPC

8.22 /

15.0 / 84.7

Step 5b T (°C)

40-50

40-50

20-30

10

20

NH₄Cl (equiv.)

3.5

3.5

2.5

pyrimidine ring formation w/ 2-chloroprop-2-enenitrile: Patent: WO2021146370A1

• Tried 2-chloroprop-2-enenitrile as in the patent literature: low to moderate conversion

pyrimidine ring formation w/ 3-ethoxyacrylonitrile: ACS Medicinal Chemistry Letters, **2016**, vol. 7, # 5, 465 – 469

er conversion in general nd easier handling in Step 5

equiv. with DBU (2 eq) in DMSO (5V) at 55-65 °C for 18h:

Solubility study of Cmpd. 7 to determine extraction solvent in the work-up

Solvents (20-30°C)	Volume	Solvents (20-30°C)	Volume
МеОН	4V	DCM	10V
EtOH	10V	DMSO	10V
IPA	30V	DMF	10V
Acetone	34V	MeCN	100V
THF	150V	14-dioxane	180V

PG

• Further reduction of reagent

Step 5b IPC 9 / Int / 10 / Des-PG

14.9 / 0.14 / 53.7 / 26.8

13.1 / 83.6 / 0

/0

12.7 / 6.6 / 79.7 / 0.8

	55-65 C, 20 H
10	
 Use of 3-ethoxyacry 	ylonitrile provided highe
 Use of 10 as freebas 	se gave better results ar

JESY

Demo result: 120 g scale, 86.1% isolated yield, 99.9% purity, 99.7% assay

• DCM/EtOAc was selected to avoid solvent switch with acceptable impurity purging efficiency.

Demo result: 60 g scale, 55% isolated yield, 100% purity, 99.1% assay

Route 3 after process optimization

 Inexpensive and readily available starting materials • No transition-metal catalyzed chemistry; good robustness in lab scale-up Process is ready for kg scale-up

• DCM was selected. Reaction solvent DMSO can be removed by water wash.

